

RACTICE PROBLEM

DPP No. 37

Total Marks : 27

Max. Time : 30 min.

Topics : Sequence & Series, Application of Derivatives, Limits, Continuity & Derivability

Type of Questions		М.М.,	Min.
Single choice Objective (no negative marking) Q. 1,2,3,4,5	(3 marks, 3 min.)	[15,	15]
Subjective Questions (no negative marking) Q. 6,7,8	(4 marks, 5 min.)	[12,	15]

- **1.** If a, b,c,d, e are five positive numbers, then
 - (A) $\left(\frac{a}{b} + \frac{b}{c}\right) \left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$ (B) $\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge \frac{1}{5}$ (C) $\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{e} + \frac{e}{a} < 5$ (D) None of these
- 2. Set of all possible values of a such that $f(x) = e^{2x} (a + 1)e^x + 2x$ is monotonically increasing for all $x \in R$, is
 - (A) (3, 4) (B) $(-\infty, 0)$ (C) $(-\infty, 3]$ (D) $(3, \infty)$
- 3. If at each point of the curve $y = x^3 ax^2 + x + 1$, tangent is inclined at an acute angle with the positive direction of the x-axis then

5. Let
$$U_n = \frac{n!}{(n+2)!}$$
 where $n \in N$. If $S_n = \sum_{n=1}^n U_n$, then $\lim_{n \to \infty} S_n$ equals

- (A) 2 (B)1 (C) $\frac{1}{2}$ (D) non existent
- 6. If the equation $x^2 e^x = k$ possess three real roots then the range of values of k is _____
- 7. Find value of a, b, c such that curves $y = x^2 + ax + b$ and $y = cx x^2$ will touch each other at the point (1, 0).
- 8. If f(x) and g(x) are continuous functions in [a, b] and they are differentiable in (a, b) then prove that

$$\begin{vmatrix} f(a) & f(b) \\ g(a) & g(b) \end{vmatrix} = (b-a) \begin{vmatrix} f(a) & f'(c) \\ g(a) & g'(c) \end{vmatrix}$$
 where a < c < b.

Get More Learning Materials Here : 📕

.

🕀 www.studentbro.in

Answers Key

- **1.** (A) **2.** (C) **3.** (C) **4.** (A)
- **5.** (C) **6.** $k \in (0, 4e^{-2})$ **7.**a = -3, b = 2, c = 1

Get More Learning Materials Here : 📕

